Completely continuous endomorphisms of p-adic Banach spaces
نویسنده
چکیده
In Dwork’s memoir [3] concerning the rationality of zeta functions, an essential role is played by the p-adic analytic function det(1− tu), where u is a certain infinite matrix. This analytic function is an entire function, exactly as in the classical Fredholm theory. It was natural to pursue this analogy and extend to u the spectral theory of F. Riesz; this is just what Dwork did ([4], §2). In that which follows, I show that these results simply provide the fact that u is the matrix of a completelycontinuous endomorphism of a Banach space; it is found in fact that, in p-adic analysis, the theories of Riesz and of Fredholm have the same domain of validity: there is no distinction between nuclear operators (or ??) and completely continuous operators.
منابع مشابه
A REINTERPRETATION OF EMERTON’S p-ADIC BANACH SPACES
It is shown that the p-adic Banach spaces introduced by Emerton, are isomorphic to the cohomology groups of the sheaf of continuous Qp-valued functions on a certain space. Some applications of this result are discussed.
متن کاملTHE HALF-INTEGRAL WEIGHT EIGENCURVE by
— In this paper we define Banach spaces of overconvergent half-integral weight p-adic modular forms and Banach modules of families of overconvergent halfintegral weight p-adic modular forms over admissible open subsets of weight space. Both spaces are equipped with a continuous Hecke action for which Up2 is moreover compact. The modules of families of forms are used to construct an eigencurve p...
متن کاملQuasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions
We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...
متن کاملar X iv : 0 90 6 . 32 49 v 1 [ m at h . N T ] 1 7 Ju n 20 09 THE HALF - INTEGRAL WEIGHT EIGENCURVE
— In this paper we define Banach spaces of overconvergent half-integral weight p-adic modular forms and Banach modules of families of overconvergent halfintegral weight p-adic modular forms over admissible open subsets of weight space. Both spaces are equipped with a continuous Hecke action for which U p2 is moreover compact. The modules of families of forms are used to construct an eigencurve ...
متن کاملSEARCHING FOR p-ADIC EIGENFUNCTIONS
In doing p-adic analysis on spaces of classical modular functions and forms, it is convenient and traditional to broaden the notion of “modular form” to a class called “overconvergent p-adic modular forms.” Critical for the analysis of the p-adic Banach spaces composed of this wider class of forms is the “Atkin U -operator”, which is completely continuous and whose spectral theory (still not ve...
متن کامل